Unicity in Approximation of
a Function and its Derivatives

By Lee Johnson

For f continuous and real on [0, 1], let ||f]| = max |f(z)|, = € [0, 1]. In this
journal, Moursund [3] proved

TaeorEM 1. Let f be twice differentiable on [0, 1]. Among all polynomials h(x) of
degree n or less, let p(x) be the one that minimizes: max {||h — fl|, ||W — F'||}. If
q(x) is another such minimizing polynomial, then ¢ = p’.

Let f denote the 7th derivative of f. Moursund’s result can be extended to:

TaroreM 2. Let f be (k 4 1)-ttmes differentiable on [0, 1]. Among all polynomials
h(x) of degree n or less, let p(x) be the one that minimizes:

max {{[h — fl|, [[B* = F1II, - - [[B* = fH[}.

If q(x) is another such minimizing polynomial, then ¢* = p*.

We need some preliminary results before establishing Theorem 2. Let M (h) =
max {||h]|, - -+, ||k*||}. The functional M is a norm on the set S of functions that
are (k 4+ 1)-times differentiable on [0, 1].

Let @ denote the set of polynomials of degree n or less. Call po € @ a best
approximation to f € Sif M(po — f) < M(q — f), for all ¢ € Q. It can be shown
[1] that the set of best approximations is convex and nonempty.

Call x & [0, 1] an extreme point of p — f if for some 2, 0 = ¢ =k,
lpi(x) — fi(x)] = ||pt — fi|]| = M(p — f). Denote the set of extreme points of
p — f by E(p, f). Standard arguments quickly show [2] that p is a best approxima-
tion to f if and only if p is a best approximation to f on E(p, f).

Proof of Theorem 2. Let p and ¢ be two best approximations to f; and suppose
p* # ¢ Letc = tp + (1 — t)g, t &€ (0, 1); then c is also a best approximation
to f. Using p* # ¢*, we will construct an approximation to f that is better than ¢
on E(c, f), giving a contradiction. Let a; = j if there are j points z in (0, 1) such
that [ei(z) — fi(@)| = ||t — f1| = M(c — ). |

Let b; = 0, 1, 2 according as none, one or both of 2 = 0, z = 1 are such that
lei(z) — fi(z)] = M(c — f). In particular, a; = b; = 0if ||ci — fi|| < M(c — f).

If zo is among the a; extreme points of ¢ — f% then

(1) zois not among the a;y1 extreme points of ¢+ — fitl

(2) pi(xe) — filwa) = ¢'(xo) — fi(xo) = £M(c — f),

@) p(xo) — fH (o) = ¢"(z0) — f*!(z0) = 0.

From (2) and (3), pi(z) — ¢i(x) has at least 2a; + b, zeroes. We will show that
p* — ¢t has at least (bo + -+ + bs) + 2(a0 + -+ + a;) — 7 zeroes.

‘LemMA. Let h(z) be a polynomial with r single zeroes, s double zeroes and t triple
zeroes. Let h'(x) have u double zeroes—none of which are among the t triple zeroes of
h(z). Then k' (x) has at least r + 2s + 3t + 2u — 1 zeroes.

Proof. Let r + s 4+ t = v, and label the zeroes of h(x) as 1, « + -, Z,; Ti < Tip1.
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In (2 x.1) there is a zero of h’(x); furthermore, this zero must be of odd multi-
plicity. Also none of the u double zeroes of h'(z) are counted among the v distinet
zeroes of h(x). Counting the zeroes of A’'(z) we obtain

(a) s + 2t; from the multiple zeroes of h(x),

(b) v — 1; the zeroes of A'(z) in (z;, T41),

() 2u; as noted, the v — 1 zeroes in (b) are of odd multiplicity. If one of the
u double zeroes of h’(x) is included in (b), this zero. must have been of multiplicity
3 or more.

Adding (a), (b) and (c), establishes the lemma.

Using (1), (2) and (3) from above; and applying the lemma repeatedly to the
derivatives of p(z) — ¢(z), we obtain

(4) pi(x) — q(x) has at least (bo + - -+ + b)) + 2(ao -+ - -+ + a;) — ¢ zeroes.

As p¥ — ¢F £ 0, it must be thatn — &k = (bo+ - -+ + bx) +2(ao + -+ - + ax)
— k.

The same argument, starting with pi(x) — ¢/(x), gives that p* — ¢* has
G;+ -+ b))+ 2(a;+ - + a) — (b — j) zeroes. Thus, p* 5% ¢* means that

BG) G+ -+ b)) +20@+ - Fa)=n—j 0=k

We will use (5) to construct a polynomial r(z) such that ri(y) — fi(y) = 0if
y is one of the a; + b; extreme points of ¢! — f* Select s points in (0, 1), distinct
from the ao + bo extreme points of ¢ — f; where s + (bo + -+ + b)) +
2(ao + -+ + ax) = n + 1. Note that from (5), s = 1.

Let Dx) = (1, =z, 2% ---, a"), D](.’Iﬁ) = (0, 1, 22, ---, na™), D) =

0,0,2, ---, n(n — 1)a*?). Define D* similarly, ¢ = 3, - - -, k. We will form an
(n 4+ 1) X (n + 1) “Vandermonde-like”’ matrix A, as follows. For each of the s
points 1, - - -, ys chosen in (0, 1), let A have a row of the form D(y;). For each of
the ao extreme points w of ¢ — f, let A have two rows of the form

D(w)

D' (w) .

For each of the by “‘end-point”’ extreme points z of ¢ — f, let A have a row of the
form D(z).

Generally, for each of the a; extreme points w of ¢ — f% let A have 2 rows of
the form

Di(w)

Dt (w) .
For each of the b; “‘end-point” extreme points of ¢ — f% let A have a row of the
form Di(z).

We now show that A is nonsingular. Suppose AdT is the zero vector; where

d = (do, dy, - -+, dy). Form h(z) = du2™ + - -+ 4+ dwr + do. Clearly, hi(z) has a;
double zeroes and b; single zeroes; 0 < ¢ = k. Applying the lemma, h*(z) has
s+ (bo+ --- + b)) + 2@+ - +aa) —k =mn-+1— kzeroes. As h¥(z)

has degree n — & or less, h* = 0.
Using (5), and s + (bo + -+ + b)) + 2(ao + --+ + ax) = n + 1, we have

sS4 (ot - Fb) + 20+ - Fa)ZjF2;5=0,1, k—1.
Hence by (4), hi(xz) has at least 2 zeroes, j = 0, 1, ---, k — 1. As h* = 0, this
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shows that h = 0,0ord; = 0,7 =0, 1, -- -, k. Thus, A is nonsingular.

As A is nonsingular, we can fit f(z), f1(x), - - -, f*(x) exactly on the (bo + - - - + b)
4+ 2(a0 + -+ 4+ ax) = n extreme points of ¢ — f. That is, we can find r(z) of
degree n or less, so that if |ci(z’) — fix’)] = |l¢t — fi|| = M(c — f), then
riz’) — fi(z’) = 0. It may well be, even though ri(z’) — fi(z’) = 0, that
[ri(z") — fi(@@')] = M(c — f) for some j, j 5 <. If this is the case, 2/ must not have
been one of the a; + b, extreme points of ¢/ — f7. If |ci(z’) — fi(z)| < M(c — f),
there is some ¢ & (0, 1) such that

tri@) — Fi@) + (L= O@EE) = F@)] < M= 1) .

As E(c, f) was supposed to be a finite set, we can use the above remark to
choose some ¢ & (0, 1) such that

tri@) = @) + (1 = (@) — F@)| < M —1), foralls € B,f)

t = 0,1, ---, k. This gives tr + (1 — t)c a better approximation to f on E(c,f)
than is ¢. Thus, ¢ could not have been a best approximation.

The proof above, except for cumbersome notational modifications, clearly es-
tablishes the more general

TaeorEM 3. Let 4, j, -+, k be any finite sequence of nmomnegative integers,
1<j < -+ <k Let f(x) be (k + 1)-times differentiable on [a, b]. Among all poly-
nomials h(z) of degree n or less, let p(x) be one that minimizes:

max {|[h¢ — fill, [[B3 — fil], -~ -, [[B* = f]}

If q(x) is another such minimizing polynomial, then ¢* = p*.
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