Unicity in Approximation of a Function and its Derivatives

By Lee Johnson

For f continuous and real on [0, 1], let $||f|| = \max |f(x)|$, $x \in [0, 1]$. In this journal, Moursund [3] proved

THEOREM 1. Let f be twice differentiable on [0, 1]. Among all polynomials h(x) of degree n or less, let p(x) be the one that minimizes: max $\{||h - f||, ||h' - f'||\}$. If q(x) is another such minimizing polynomial, then q' = p'.

Let f^i denote the *i*th derivative of f. Moursund's result can be extended to:

THEOREM 2. Let f be (k + 1)-times differentiable on [0, 1]. Among all polynomials h(x) of degree n or less, let p(x) be the one that minimizes:

$$\max \{ ||h - f||, ||h^{1} - f^{1}||, \dots, ||h^{k} - f^{k}|| \}.$$

If q(x) is another such minimizing polynomial, then $q^k = p^k$.

We need some preliminary results before establishing Theorem 2. Let $M(h) = \max \{||h||, \dots, ||h^k||\}$. The functional M is a norm on the set S of functions that are (k + 1)-times differentiable on [0, 1].

Let Q denote the set of polynomials of degree n or less. Call $p_0 \in Q$ a best approximation to $f \in S$ if $M(p_0 - f) \leq M(q - f)$, for all $q \in Q$. It can be shown [1] that the set of best approximations is convex and nonempty.

Call $x \in [0, 1]$ an extreme point of p - f if for some $i, 0 \leq i \leq k$, $|p^i(x) - f^i(x)| = ||p^i - f^i|| = M(p - f)$. Denote the set of extreme points of p - f by E(p, f). Standard arguments quickly show [2] that p is a best approximation to f if and only if p is a best approximation to f on E(p, f).

Proof of Theorem 2. Let p and q be two best approximations to f; and suppose $p^k \neq q^k$. Let c = tp + (1 - t)q, $t \in (0, 1)$; then c is also a best approximation to f. Using $p^k \neq q^k$, we will construct an approximation to f that is better than c on E(c, f), giving a contradiction. Let $a_i = j$ if there are j points x in (0, 1) such that $|c^i(x) - f^i(x)| = ||c^i - f^i|| = M(c - f)$.

Let $b_i = 0, 1, 2$ according as none, one or both of z = 0, z = 1 are such that $|c^i(z) - f^i(z)| = M(c - f)$. In particular, $a_i = b_i = 0$ if $||c^i - f^i|| < M(c - f)$. If x_0 is among the a_i extreme points of $c^i - f^i$, then

(1) x_0 is not among the a_{i+1} extreme points of $c^{i+1} - f^{i+1}$,

(2) $p^{i}(x_{0}) - f^{i}(x_{0}) = q^{i}(x_{0}) - f^{i}(x_{0}) = \pm M(c - f),$

(3) $p^{i+1}(x_0) - f^{i+1}(x_0) = q^{i+1}(x_0) - f^{i+1}(x_0) = 0.$

From (2) and (3), $p^i(x) - q^i(x)$ has at least $2a_i + b_i$ zeroes. We will show that $p^i - q^i$ has at least $(b_0 + \cdots + b_i) + 2(a_0 + \cdots + a_i) - i$ zeroes.

LEMMA. Let h(x) be a polynomial with r single zeroes, s double zeroes and t triple zeroes. Let h'(x) have u double zeroes—none of which are among the t triple zeroes of h(x). Then h'(x) has at least r + 2s + 3t + 2u - 1 zeroes.

Proof. Let r + s + t = v, and label the zeroes of h(x) as $x_1, \dots, x_v; x_i < x_{i+1}$.

Received November 16, 1967.

In (x_i, x_{i+1}) there is a zero of h'(x); furthermore, this zero must be of odd multiplicity. Also none of the *u* double zeroes of h'(x) are counted among the *v* distinct zeroes of h(x). Counting the zeroes of h'(x) we obtain

(a) s + 2t; from the multiple zeroes of h(x),

(b) v - 1; the zeroes of h'(x) in (x_i, x_{i+1}) ,

(c) 2u; as noted, the v - 1 zeroes in (b) are of odd multiplicity. If one of the u double zeroes of h'(x) is included in (b), this zero must have been of multiplicity 3 or more.

Adding (a), (b) and (c), establishes the lemma.

Using (1), (2) and (3) from above; and applying the lemma repeatedly to the derivatives of p(x) - q(x), we obtain

(4) $p^{i}(x) - q^{i}(x)$ has at least $(b_{0} + \cdots + b_{i}) + 2(a_{0} + \cdots + a_{i}) - i$ zeroes. As $p^{k} - q^{k} \neq 0$, it must be that $n - k \ge (b_{0} + \cdots + b_{k}) + 2(a_{0} + \cdots + a_{k}) - k$.

The same argument, starting with $p^{j}(x) - q^{j}(x)$, gives that $p^{k} - q^{k}$ has $(b_{j} + \cdots + b_{k}) + 2(a_{j} + \cdots + a_{k}) - (k - j)$ zeroes. Thus, $p^{k} \neq q^{k}$ means that (5) $(b_{j} + \cdots + b_{k}) + 2(a_{j} + \cdots + a_{k}) \leq n - j, \ 0 \leq j \leq k.$

We will use (5) to construct a polynomial r(x) such that $r^i(y) - f^i(y) = 0$ if y is one of the $a_i + b_i$ extreme points of $c^i - f^i$. Select s points in (0, 1), distinct from the $a_0 + b_0$ extreme points of c - f; where $s + (b_0 + \cdots + b_k) + 2(a_0 + \cdots + a_k) = n + 1$. Note that from (5), $s \ge 1$.

Let $D(x) = (1, x, x^2, \dots, x^n)$, $D^1(x) = (0, 1, 2x, \dots, nx^{n-1})$, $D^2(x) = (0, 0, 2, \dots, n(n-1)x^{n-2})$. Define D^i similarly, $i = 3, \dots, k$. We will form an $(n+1) \times (n+1)$ "Vandermonde-like" matrix A, as follows. For each of the s points y_1, \dots, y_s chosen in (0, 1), let A have a row of the form $D(y_i)$. For each of the a_0 extreme points w of c - f, let A have two rows of the form

$$egin{array}{ll} D(w) \ D'(w) \end{array}$$
 .

For each of the b_0 "end-point" extreme points z of c - f, let A have a row of the form D(z).

Generally, for each of the a_i extreme points w of $c^i - f^i$, let A have 2 rows of the form

$$egin{array}{lll} D^i(w) \ D^{i+1}(w) \end{array}.$$

For each of the b_i "end-point" extreme points of $c^i - f^i$, let A have a row of the form $D^i(z)$.

We now show that A is nonsingular. Suppose Ad^{T} is the zero vector; where $d = (d_{0}, d_{1}, \dots, d_{n})$. Form $h(x) = d_{n}x^{n} + \dots + d_{1}x + d_{0}$. Clearly, $h^{i}(x)$ has a_{i} double zeroes and b_{i} single zeroes; $0 \leq i \leq k$. Applying the lemma, $h^{k}(x)$ has $s + (b_{0} + \dots + b_{k}) + 2(a_{0} + \dots + a_{k}) - k = n + 1 - k$ zeroes. As $h^{k}(x)$ has degree n - k or less, $h^{k} = 0$.

Using (5), and $s + (b_0 + \cdots + b_k) + 2(a_0 + \cdots + a_k) = n + 1$, we have

$$s + (b_0 + \cdots + b_j) + 2(a_0 + \cdots + a_j) \ge j + 2; j = 0, 1, \cdots, k - 1.$$

Hence by (4), $h^{j}(x)$ has at least 2 zeroes, $j = 0, 1, \dots, k - 1$. As $h^{k} = 0$, this

874

shows that h = 0, or $d_i = 0$, $i = 0, 1, \dots, k$. Thus, A is nonsingular.

As A is nonsingular, we can fit $f(x), f^{1}(x), \dots, f^{k}(x)$ exactly on the $(b_{0} + \dots + b_{k})$ $+ 2(a_0 + \cdots + a_k) \leq n$ extreme points of c - f. That is, we can find r(x) of degree n or less, so that if $|c^i(x') - f^i(x')| = ||c^i - f^i|| = M(c - f)$, then $r^{i}(x') - f^{i}(x') = 0$. It may well be, even though $r^{i}(x') - f^{i}(x') = 0$, that $|r^{j}(x') - f^{j}(x')| \ge M(c - f)$ for some $j, j \ne i$. If this is the case, x' must not have been one of the $a_j + b_j$ extreme points of $c^i - f^j$. If $|c^j(x') - f^j(x')| < M(c - f)$, there is some $t \in (0, 1)$ such that

$$|t(r^{i}(x') - f^{i}(x')) + (1 - t)(c^{i}(x') - f^{i}(x'))| < M(c - f).$$

As E(c, f) was supposed to be a finite set, we can use the above remark to choose some $t \in (0, 1)$ such that

$$|t(r^{i}(x) - f^{i}(x)) + (1 - t)(c^{i}(x) - f^{i}(x))| < M(c - f)$$
, for all $x \in E(c, f)$,

 $i = 0, 1, \dots, k$. This gives tr + (1 - t)c a better approximation to f on E(c,f)than is c. Thus, c could not have been a best approximation.

The proof above, except for cumbersome notational modifications, clearly establishes the more general

THEOREM 3. Let i, j, \dots, k be any finite sequence of nonnegative integers, $i < j < \cdots < k$. Let f(x) be (k + 1)-times differentiable on [a, b]. Among all polynomials h(x) of degree n or less, let p(x) be one that minimizes:

$$\max \{ ||h^{i} - f^{i}||, ||h^{j} - f^{j}||, \cdots, ||h^{k} - f^{k}|| \}.$$

If q(x) is another such minimizing polynomial, then $q^k = p^k$.

Virginia Polytechnic Institute **Department of Mathematics** Blacksburg, Virginia 24061

1. R. E. LANGER (Editor), On Numerical Approximation, Univ. of Wisconsin Press, Madison.

Wis., 1959, pp. 11-23.
W. JOHNSON, Approximation of Vector-Valued Functions, Dissertation, Michigan State Univ., East Lansing, Mich., 1967.
D. G. MOURSUND, "Chebyshev approximation of a function and its derivatives," Math. Comp., v. 18, 1964, pp. 382-389.